jueves, 22 de julio de 2021

Circuito

 


Circuito del robot seguidor de luz


El funcionamiento se basa en que el fotorresistor, al ser iluminado, disminuye fuertemente su valor resistivo. Esto interrumpe la corriente del primer transistor conectado a él, el 2N3904. El resistor de 1K (1.000 ohms) que une el sensor de la base del transistor cumple solamente una función de separación de ambos circuitos. El descenso del valor de corriente en la base del transistor 2N3904 hace que éste se abra como una llave (circuito colector-emisor). Esto habilita el paso de corriente desde el voltaje positivo hacia la base del transistor amplificador final, el PN2222A, a través del diodo emisor de luz (LED), que se coloca en esa parte del circuito sólo a modo de indicador: si está iluminado, el motor gira hacia adelante. El transistor PN2222A se cierra como una llave (circuito colector-emisor), y de este modo el motor recibe alimentación.

1. Una luz de frente activa ambos motores.

2. Una luz desde el lado derecho activa al motor izquierdo (lo que causa que el robot gira hacia la derecha, siguiendo la luz).

3. Una luz desde el lado izquierdo activa al motor derecho, lo que hace que el robot gire hacia la izquierda, siguiendo la luz.

Observando la foto del robot tomado desde arriba es más fácil comprender la dinámica del funcionamiento. Los sensores tienen colocados unos tramos de tubo plástico que ayudan a separar claramente la dirección de la luz.

viernes, 2 de julio de 2021

Dispersión de la luz

 

Subtema 3: El experimento del prisma

Newton, el científico más creativo y completo que ha dado la Historia, no escapó a la fascinación por la luz. En 1667 presentó ante la Royal Society su experimento sobre la descomposición de la luz solar.

 

 

En aquella época dominaba la idea de Descartes de que la luz estaba compuesta por pequeños corpúsculos. Los colores eran la mezcla de luz y oscuridad, en distintas proporciones. Antes que Newton, Descartes ya intentó descomponer la luz, pero sólo logró obtener los colores rojo y azul. 

Newton empleó un par de prismas de vidrio que, por entonces, eran populares como juguetes infantiles. Así que fue un experimento muy barato. Preparó una estancia en total oscuridad. Sólo a través de un agujero en la ventana entraba un rayo de luz solar. Colocó el prisma delante del rayo de luz, de modo que lo atravesara y reflejara la luz en la pared opuesta, a 7 metros de distancia. En la pared aparecían los colores del arcoíris de forma alargada, uno sobre otro.

 

Había dos posibilidades. O bien el prisma daba color a la luz, o la luz era la mezcla de todos los colores y el prisma se limitaba a descomponerla. Para comprobarlo, utilizó el segundo prisma. Tras la luz descompuesta en colores colocó otra pantalla con un agujero, a unos 3 metros. Por este agujero fue haciendo pasar los colores de uno en uno. De modo que, detrás de la pantalla, sólo podía verse el color elegido. Por ejemplo, el rojo. Una vez aislado un color, lo hacía pasar a través del segundo prisma y lo reflejaba en otra pared.

 

Comprobó que ahora sólo cambiaba el ángulo, pero no el color. Es decir, si habíamos aislado el rojo, al atravesar el segundo prisma seguía saliendo rojo. Y así con todos los colores. Dedujo que los colores del arcoíris eran colores puros, mientras que la luz blanca era la mezcla de todos ellos. El prisma no añadía ninguna cualidad a la luz, sino que la descomponía. Al proyectar los colores y juntarlos de nuevo, la luz volvía a ser blanca.

 

El experimento causó sensación en la Royal Society. Newton logró descomponer la luz solar, pero siguió sin saber por qué. Entonces aún no se conocía la naturaleza ondulatoria de la luz.

 

Hoy sí la conocemos: los colores son ondas, y cada color tiene una longitud de onda diferente. Las longitudes de onda son más largas cuanto más se acercan al rojo, y más cortas hacia el violeta. Cuando la luz blanca entra en el prisma, cada color toma un camino distinto y lo atraviesa a distinta velocidad. Salen reflejados con distinto ángulo. Por eso los colores se separan y se ven en la pared de forma alargada uno sobre otro, y no circular.

 

Es el mismo proceso que forma el arcoíris. Las gotas de agua actúan como el prisma. La luz solar se refleja en la cara interna de las gotas de lluvia y se descompone en colores.

 

Una curiosidad: Newton estableció que la luz blanca se descomponía en siete colores. Podría haber dicho seis u otra cifra (¿alguien sabe qué clase de color es el añil?). Se debe al peso de la tradición griega en nuestra cultura europea, donde el número siete es fundamental. De ahí que se repita tanto, incluso en los cuentos infantiles de tradición europea. Es la misma razón que llevó a Pitágoras a fijar en siete las notas musicales.

 

Fuente:

https://www.astromia.com/astronomia/newtonluz.htm

Experimento para calcular la constante G de la atracción de la gravedad.

 E n 1798, el físico británico Henry Cavendish midió la atracción gravitatoria entre dos masas de laboratorio con ayuda de una balanza de to...